

Global CO₂-emissions and China

• USA: 20%

• China: 20%

• EU: 12%

Russia: 6%

Japan: 4%

 China: Doubling projected by IPCC for 2025 was a reality in 2007

China's CO₂ Emissions in the Alternative Policy Scenario Compared with the Reference Scenario

 Five-year plan (2006-2010) aims at a quadrupling of GDP before 2020, while energy consumption may only double

Environmental tax reform (ETR) revenue as a share of GDP (1995-2003)

Denmark	1,1%	Finland	0,6%
Germany	0,8%	Netherlands	0,5%
Sweden	0,9%	UK (CCL) Slovenia	0,1% -

Taxation literature: Tax <u>switch</u> can mitigate competitiveness impacts

- Full <u>revenue-recycling</u> can make the tail of the dog (of climate policy) wag (Nordhaus, 1993)
- Double dividend can arise when environmental tax replaces other <u>distortionary tax</u> (Goulder, 1995)
- Inflationary effects on labour salaries can be neutralised when environmental tax <u>replaces social</u> <u>security contributions</u> or other employer cost (Parry, 1995)

Carbon-energy revenue recycling

Sweden & Finland: reduced income taxes

UK and Denmark: reduced social security contributions (ssc)

Germany & Netherlands: mix of both

Slovenia: energy taxes renamed into CO2-taxes

COMETR database: unilateral tax rates

Price taker or price setter?

Green innovation and demand: long term X-efficiency

E3ME: Two main scenarios

- Baseline (B): endogenous for 1994-2012
 - including environmental tax reform
 - 1994-2003: ex-post analysis
 - 2003-2012: ex-ante analysis
- Reference (R): counterfactual, without ETR
- Difference between R and B is effect of ETR

Effect of ETR on total fuel demand

% difference from baseline

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE.

p15 ps; 27/09/2006

Effect of ETR on total fuel demand

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE.

National Environmental Research Institute & Aarhus University, DENMARK

p16 ps; 27/09/2006

Effect of ETR on total fuel demand

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE.

cambridge econometrics

p17 ps; 27/09/2006

Effect of ETR on total fuel demand

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE.

cambridge econometrics

p18 ps; 27/09/2006

Effect of ETR on total fuel demand

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE.

p19 ps; 27/09/2006

Effect of ETR on GHG emissions

% difference

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE.

p20 ps; 27/09/2006

Effect of ETR on GDP

% difference

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE

p21 ps; 27/09/2006

Without Revenue Recycling: Effect of ETR on GDP

% difference

Note(s)

% difference is the difference between the base case and the no revenue recycling case.

Source(s) : CE

p22 ps; 27/09/2006

CHART 7.28: THE EFFECTS OF ETR: GDP IN ETR AND NON ETR COUNTRIES

% difference

Note(s): % difference is the difference between the base case and the counterfactual

reference case.

Source(s) : CE.

The Effect of ETR on Employment

% difference

Note(s) : % difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE

p23 ps; 27/09/2006

Effect on Consumer Price Index

% difference

Note(s)

% difference is the difference between the base case and the counterfactual reference case.

Source(s) : CE.

p24 ps; 27/09/2006

Carbon leakage rate within EU

- Leakage rate of 2-4% (corresponds to IEA studies finding leakage rates of 20-40% for higher tax rates)
- ETR contributed CO₂ reduction of 60 mill. tonnes
- a significant contribution to EU-15 Kyoto target

p25 ps; 27/09/2006

Why should we have faith in E3ME results?

- Ex-post approach
- Macro-econometric model based on timeseries data
- Good representation of fuel carriers; high sectoral disaggregation
- ETR modelled with official figures for revenues, not nominal tax rates
- Technological progress indicator represents impact via improved R&D
- Standard impact assessment tool for EU

How carbon-energy taxes differ from energy prices

- increased energy prices have an additional impact via prices on imported raw materials
- from an increased energy price no revenue can be recycled to lower distortionary taxes
- psychologically the signalling effect of tax is stronger than of price
- accompanying policy measures differ

Green tax switch: real tax burden per cent of gross operating surplus (GOS)

Figure 6.1 Energy Efficiency of Various Cement Clinker Production Technologies

Key point: Modern dry process cement kilns use half as much energy as the wet process to produce a tonne of cement.

Note: For wet kilns, the arrow represents the range of energy consumption for different wet kiln types. Source: FLSmidth, 2006.

Environmental agreements

Partial reimbursement of tax if:

- Binding energy saving target
- Energy management system
 - with energy audit, staff training, procurement policies and annual progress report

RESULT: 60 per cent higher energy savings than in companies subject to tax only

(Bjørner and Togeby, 1999)

... improving resource productivity!

