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AI and Climate Change 
How can AI Address the Energy Efficiency Objectives  

in the Industry? 

The rise of generative AI has reignited the debate about the energy cost of AI. However, so far, the potential for AI to help optimize 
resource use, or to facilitate firms’ transition from dirty to green production technologies, has been largely overlooked. No serious 
attempt has been made at computing the overall energy cost and/or benefit of AI. Traditional AI models require significantly 
less energy-intensive training and inference and could enable companies to improve the energy efficiency of their technologies 
and help them meet their environmental objectives for the coming years. Machine and deep learning models used in industry 
and deployed using digital twins can control complex processes and optimize their resource use, in energy-intensive industries, 
and achieve significant energy-saving potential. Wastewater treatment is emblematic in this respect: aeration during secondary 
treatment typically accounts for roughly half of a plant’s electricity consumption. Our focus in this article is on the comparison 
between the direct energy cost of AI operations and the energy saving AI induces when implemented by Veolia. 

Veolia, in partnership with PureControl, has rolled out one of the first large-scale deployments of AI for climate-relevant efficiency, 
covering about 200 plants. PureControl’s system ingests high-frequency data (≈15 minutes intervals) on electricity prices, weather, 
sensor streams, and laboratory quality samples to maintain a live digital replica of the plant. The AI then schedules and doses 
aeration to minimize cost and consumption while assuring effluent quality and regulatory thresholds.

We evaluate AI’s net effect using plant-level operational data, natural experiments (unplanned interruptions), and a full accounting 
of the AI layer’s own electricity use. Preliminary results from ~15 plants indicate a nearly 10% reduction in electricity consumption 
and GHG emissions, while AI’s direct electricity use accounts for less than 1% of the gross energy savings. Even under conservative 
assumptions about additional required hardware installations, the maximum lifecycle carbon cost of AI remains well below the 
emissions abatement, thereby pointing to a robust net-positive climate contribution.

Introduction
AI is often portrayed as an energy drain with a significant 
environmental impact, but this view overlooks compact, 
domain-specific systems embedded in industrial control. 
In such settings, AI acts as a continuous optimizer, aligning 
operations with real-time constraints and prices. Wastewater 
treatment offers a decisive test: secondary treatment’s 
aeration is energy-intensive and 
tightly regulated.

This study has been led by the 
Collège de France in partnership 
with Veolia and PureControl, a 
French start-up that develops 
AI-driven digital twins to optimize 
the electricity consumption of this 
process while ensuring effluent quality 
and regulatory compliance. Using a novel, high-granularity 
dataset across Veolia facilities, we quantify gross energy 
and GHG emissions savings, and net out the AI layer’s own 
electricity use. We also examine load shifting toward off-
peak hours, while ensuring effluent quality and regulatory 
compliance. Early evidence points to a nearly 10% reduction  
in electricity use in achievable at scale.

The Role of AI in Fostering the Energy 
Transition
A heated Public Debate 
The rapid diffusion of AI has spurred concern that digitalization 
may raise global electricity demand. Media narratives often 
extrapolate from the power required to train frontier, Large 
Language Models specific to generative AI to all AI uses. The 

Artificial Intelligence Policy Institute ran a survey, 
revealing that 72% of American voters are 

concerned about the increasing energy 
consumption of AI data centers.1 Whether 
these concerns are warranted depends less 
on aggregate energy consumption than 
on the pace and geographic concentration 
of deployment, which can strain local grid 
capacity. Moreover, treating AI as a single, 
homogeneous technology obscures crucial 
heterogeneity between cloud versus edge 

deployment, general-purpose versus specialized control systems, 
and regional infrastructure constraints.

The Ambiguous Net Impact
Scenario analyses suggest that data centers’ electricity demand 
could grow markedly this decade.2 Yet the same digital technologies 
can also curb energy consumption by optimizing energy-intensive 
processes across industry, buildings, transport, and agriculture. The 
key question is what is the net energy impact of using AI in specific 
real-world settings? Are the savings of the use of AI greater than 
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the energy costs of running AI, and under what conditions? Digital 
twins (virtual replicas fed by live data) offer a promising route 
for increased efficiency,3 enabling closed-loop control, predictive 
maintenance, and counterfactual simulation enabling optimized 
processes without disrupting physical assets.

Why Digital Twins Matter
A digital twin continuously synchronizes with the physical process, 
learns about its dynamics, and tests “what-if” adjustments before 
implementation. In energy-intensive operations, the use of AI 
can help to process efficiency through a reduction in wasteful 
overshoot, increase flexibility by shifting consumption to off-peak 
or low-carbon hours while preserving output quality.

These levers are particularly relevant in wastewater treatment, 
where quality constraints are strict, the physical processes are 
complex, and energy use is concentrated in a few steps.

Using AI to Reduce Energy in the Water 
Sector: The Veolia Case

Context: Where the Energy Goes
In conventional wastewater treatment, secondary treatment 
(biological oxidation) is typically the energy hotspot. Continuous 
aeration supplies dissolved oxygen for microbial degradation of 
pollutants; blowers and compressors often represent roughly 
half of a plant’s electricity bill.4 Historically, control relies on rule-
based mechanisms tied to thresholds to guarantee compliance 
under uncertainty. These rules are robust but conservative, often 
over-aerating to avoid breaching limits.
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Figure 1: Representation of a wastewater treatment plant with activated sludge

Veolia × PureControl: From Automation to Learning Control
Veolia, a global leader in water and wastewater services, 
partnered with PureControl to deploy AI-enabled digital twins 
across its portfolio. Nearly 300 Veolia plants operate with 
PureControl’s device. The system aggregates high-frequency data 
(generally at quarter-of-hour intervals) from:

• �Internal sensors: water flow rate, redox level,5 aeration time, 
electricity power.

• �Laboratory samples: regulatory quality metrics (e.g., nitrate, 
ammonium).

• �External signals: weather forecasts and ambient conditions 
(snow, rain, humidity, temperature)

• �Electricity markets: tariffs, time-of-use prices, and demand 
charges.

These data are integrated into several modelling layers using 
both traditional statistical methods to predict short-term 
outcomes (flow rate and pollution level) and deep learning neural 
networks to optimize the use of more advanced processes such 
as the aeration timing and intensity. AI is used to implement 
the aeration of the basin that minimizes cost and consumption 
subject to hard effluent-quality constraints and safety margins.
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Figure 2: Geographic distribution of Veolia facilities 
operating with PureControl’s digital-twins 

Operational Principle
The AI does not relax compliance, but it refines how compliance is 
achieved. In practice, that means avoiding systematic oversupply 
of oxygen, shifting aeration toward off-peak hours when feasible, 
without jeopardizing the quality of effluents and an adaptive 
response to real-time data inflows. Yet the human remains in the 
loop, and operators can retain authority when necessary.

Assessing the Impact:  
Methods and Early Evidence
Data Architecture and Granularity
The study uses plant-level telemetry, lab results, and opensource 
weather data assembled by PureControl. Variables include 
granular electricity draw, aeration blower runtimes and set-
points, dissolved oxygen and nutrient concentrations, influent 
characteristics, ambient conditions, and time-of-use pricing. This 
resolution allows plants to track both levels (kWh, kg CO₂e) and 
profiles (load shifting across the day) of consumption.

Figure 3: Profile of the energy consumption, median aeration time and AI use (in proportion of time) around  
the implementation of AI for a given plant

On September 15, the AI was active 36% of time. The plant consumed 1108 kWh of electricity and the aeration system operated for 
551 minutes.

Empirical Strategy Agenda to Measure AI Impact
Our approach uses complementary strategies to isolate AI’s 
effect from potential confounding factors. 

First, AI implementation and failures offer a natural experimental 
setup to identify the causal effect of AI on electricity consumption 
and isolate it from potential confounding factors. In particular, 
we exploit exogenous interruptions to AI-assisted control (that 
temporarily revert plants to their baseline behavior). Comparing 
adjacent windows before/after such shocks within the same plant 
yields a within-asset estimate of AI’s causal effect on consumption 
and quality, controlling for seasonality and load differences across 
stations. Staggered adoption across plants is useful to run event-
study models comparing treated to not-yet-treated plants, with 
granular fixed effects at the plant-level, for each calendar time, 
and weather bins. It captures persistent shifts attributable to AI, 
while the fixed effects absorb the common shocks that affect all 
units, preventing them from biasing the estimated impact.

Second, we can net out the AI layers’ electricity use, by estimating 
the electricity consumption induced by AI servers. Net savings 
then equal gross plant-side reductions minus this overhead. 

Finally, we turn to the Profile analysis to disentangle the 
effect on the plant energy use from the reallocation of energy 
consumption over time. It allows testing to determine whether 
AI reallocates consumption toward off-peak hours without 
harming effluent quality, using price-exposure interactions and 
intraday load curves.

Preliminary Results
In an initial subsample, we observe, pending further analysis of 
this data:

• �Energy and emissions: a nearly 10% average reduction in 
electricity consumption and its induced level of GHG emissions 
on days when AI is used at full extent compared to days when 
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AI does not control the process. This result has only been tested 
under restrictive assumptions so far and its robustness will be 
extended in a more detailed analysis in later stages of this project.

• �AI overhead: the PureControl layer’s own electricity draw is 
estimated to represent less than 1% of the gross energy savings, 
leaving a strong net reduction. Even in the most conservative 
cases, in the rare cases when hardware adjustments are required 
onsite to adopt AI locally, induced lifecycle GHG emissions never 
exceed 30-45% of the GHG emissions savings.

• �Load shifting: evidence of partial reallocation toward off-peak 
tariffs, with potential to enhance grid friendliness as price 
signals strengthen.

We further observe significant variations in AI's impact on 
energy consumption and GHG emissions depending on the 
duration of AI usage on a given day. Specifically, when AI is used 
over a longer time interval within a daily operational cycle, its 
ability to reduce both energy consumption and greenhouse 
gas emissions increases. This effect likely arises from the AI's 
capacity to optimize plant operations over extended periods, 
allowing it to adjust aeration cycles more effectively and shift 
energy consumption to off-peak times. Longer exposure to AI-
driven control provides the system with more data and time to 
fine-tune operational parameters, leading to more significant 
and sustained reductions in energy use. Conversely, on days 
when AI is applied for shorter durations, the potential for such 
optimizations is limited, and the resulting savings in energy and 
emissions are less substantial. 
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Figure 4: Mean daily consumption and GHG emissions 
depending on the share AI-control time during the day

 

Scaling and Governance
To scale AI across multiple plants effectively, several key 
prerequisites must be met:

1. �Data infrastructure: There must be a reliable system in place 
for collecting and sharing data. The larger data the AI gets, 
the better the quality of the AI predictions and optimizations. 
It requires proper connectivity protocols to ensure the AI can 
access the data it needs in real-time.

2. �Access and control: For AI to manage plant operations, it 
needs the ability to interact with the system’s controls. This 
means that operators must allow the AI to adjust settings on 
machines or automate specific processes.

3. �Up-to-date systems: The technology running the AI needs to 
be kept current and well-maintained. This includes ensuring 
that all devices are compatible with the AI system. Updating 
hardware helps the system stay efficient and ensures it can 
handle more data as the plant’s operations grow.

These foundational elements ensure that AI can be integrated 
effectively into plant operations and scaled successfully, while 
maintaining control and security.

Conclusion
AI’s energy story is not one-sided. In wastewater treatment, 
AI-driven digital twins can deliver verifiable reductions in 
electricity use and GHG emissions precisely where consumption 
is concentrated ‒ secondary aeration ‒ without compromising 
regulatory performance. In Veolia’s partnership with PureControl, 
early evidence across a growing set of facilities points to a nearly 
10% energy and GHG cuts, negligible operational overhead from 
the AI layer, and promising load-shifting benefits.

As the research project broadens, rigorous, portfolio-wide 
evaluation will refine these estimates. For utilities and 
policymakers, the message is clear: targeted, specialized AI ‒ 
embedded in robust governance ‒ can be a practical lever for 
decarbonization today.
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